
Active Analytics: Adapting Web Pages 
Automatically Based on Analytics Data 

 

By 

William R. Carle II 

 

 

A thesis submitted to the 

School of Computing 

in partial fulfillment of the requirements for the degree of 

 

Master of Science in Computing and Information Sciences 

 

 

 

UNIVERSITY OF NORTH FLORIDA  

SCHOOL OF COMPUTING 

 

 

 

  



2 
 

Copyright (©) 2014 by William R. Carle II 

 

All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of 

William R. Carle II or designated representative. 

  



3 
 

The thesis “Active Analytics: Adapting Web Pages Automatically Based on Analytics Data” submitted by 

William R. Carle in partial fulfillment of the requirements for the degree of Master of Science in 

Computing and Information Sciences has been 

 

Approved by the thesis committee:                Date 

 

                  

Dr. Karthikeyan Umapathy 

Thesis Advisor and Committee Chairperson 

 

                     

Member 2 

 

                     

Member 3 

 

Accepted for the School of Computing: 

 

                     

Dr. Asai Asaithambi 

Director of the School 

 

Accepted for the College of Computing, Engineering, and Construction: 

 

                     

Dr. Mark Tumeo 

Dean of the College 

 

Accepted for the University: 

 

                     

Dr. John Kantner 

Dean of the Graduate School  



4 
 

TABLE OF CONTENTS 
 

 
ACKNOWLEDGEMENT .................................................................................... Error! Bookmark not defined. 

TABLE OF CONTENTS ..................................................................................................................................... 4 

FIGURES ......................................................................................................................................................... 6 

TABLES ........................................................................................................................................................... 7 

ABSTRACT ...................................................................................................................................................... 8 

Chapter 1. Introduction ................................................................................................................................ 9 

1.1 Problem Statement ....................................................................................................................... 9 

1.2 Contributions .................................................................................................................................... 11 

1.3 Plan .................................................................................................................................................... 12 

1.4 Organization ...................................................................................................................................... 13 

Chapter 2. Background and Literature Review ........................................................................................... 15 

2.1 Background ....................................................................................................................................... 15 

2.1.1 Theory Background Topics ......................................................................................................... 15 

2.1.2 Implementation Background Topics .......................................................................................... 22 

2.2 Related Work .................................................................................................................................... 25 

2.2.1 Web Usage Mining ..................................................................................................................... 25 

2.2.2 Web Usability ............................................................................................................................. 29 

Chapter 3. Research Methodology ............................................................................................................. 31 

3.1 Design Science Research Methodology ............................................................................................ 31 

3.2 Design Science Research Guidelines ................................................................................................. 31 

3.2.1 Design as an Artifact .................................................................................................................. 32 

3.2.2 Problem Relevance .................................................................................................................... 32 

3.2.3 Design Evaluation ....................................................................................................................... 32 

3.2.4 Research Contributions .............................................................................................................. 33 

3.2.5 Research Rigor ........................................................................................................................... 33 

3.2.6 Design as a Search Process ........................................................................................................ 34 

3.2.7 Communication .......................................................................................................................... 34 

Chapter 4. Dynamic Analytics Framework .................................................................................................. 35 

4.1 Website Improvement Process ......................................................................................................... 35 

4.2 Dynamic Analytics Framework Architecture ..................................................................................... 37 



5 
 

4.2.1 Extracting Analytics Data ........................................................................................................... 38 

4.2.2 Analytics Data Store ................................................................................................................... 42 

4.2.3 Web Service Layer ...................................................................................................................... 45 

4.2.4 Client Side Framework ............................................................................................................... 48 

4.3 Technology ........................................................................................................................................ 49 

4.3.1 Google App Engine Technology Stack ........................................................................................ 50 

4.3.2 Microsoft Technology Stack ....................................................................................................... 50 

4.4 Timeline ............................................................................................................................................. 51 

4.5 Budget ............................................................................................................................................... 53 

4.5.1 Budget: Google App Engine Technology Stack .......................................................................... 53 

4.5.2 Budget: Microsoft Technology Stack ......................................................................................... 54 

4.5.3 Technology Stack Choice ................................................................................................................ 54 

Chapter 5. Real-World Application ............................................................................................................. 56 

Chapter 6. Evaluation .................................................................................................................................. 58 

6.1 Testing Process .................................................................................................................................. 58 

6.2 Our Study Participants ...................................................................................................................... 59 

6.3 IRB Approval ...................................................................................................................................... 59 

Chapter 7. Future Improvements ............................................................................................................... 60 

Chapter 8. Conclusion ................................................................................................................................. 61 

 

 

 

  



6 
 

FIGURES 

 

Figure 1. Google Analytics Behavior Flow Report ....................................................................................... 17 

Figure 2. The Website Improvement Process ............................................................................................. 36 

Figure 3. Dynamic Analytics Framework Architecture ................................................................................ 38 

Figure 4. Querying and Storing Analytics Data ........................................................................................... 40 

Figure 5. Data Store Schema ....................................................................................................................... 44 

Figure 6. Web Service Interfaces ................................................................................................................ 46 

Figure 7. Web Service Sequence Diagram .................................................................................................. 47 

Figure 9. UNF Website Homepage .............................................................................................................. 57 

 

  



7 
 

TABLES 

 

Table 1. Select HHS Usability Guidelines .................................................................................................... 20 

Table 2. Analytics API Queries .................................................................................................................... 41 

Table 3. Components .................................................................................................................................. 49 

Table 4. Google App Engine Technology Stack ........................................................................................... 50 

Table 5. Microsoft Technology Stack .......................................................................................................... 51 

Table 8. Timeline ......................................................................................................................................... 52 

Table 6. Budget: Google App Engine Technology Stack .............................................................................. 53 

Table 7. Budget: Microsoft Technology Stack ............................................................................................. 54 

 

  



8 
 

ABSTRACT 

 

It can be difficult for web designers to adapt the site’s design to fit with changing usage trends. Web 

analytics tools give designers a window into website usage patterns, but they must be analyzed and 

applied to a website's design manually. Analytics data should be taken into account when designing the 

user interface (UI) of a website and should be constantly revisited to evolve the design of the site as 

needs change. A framework for marrying live analytics data with user interface design could allow for 

interfaces that adapt dynamically to usage patterns, with little or no action from the designers.  The goal 

of this research is to create a framework that utilizes web analytics data to automatically update and 

enhance web user interfaces. 

The first problem addressed in this research is how to extract and summarize analytics data from 

popular web analytics tools such as Google Analytics.  In this research, we present a solution for 

extracting this data via web services and transforming it into reporting data that will inform user 

interface improvements.  Once the data has been extracted and summarized, we expose the 

summarized reports via web services for use by our client side UI framework.  This client side framework 

will dynamically update the content and navigation on the page to reflect the data mined from the web 

usage reports. The resulting system will react to changing usage patterns of a website and update the 

user interface accordingly, reducing the time it takes users to find the content they are looking for. 

To evaluate the effectiveness of the proposed framework we will perform end user testing comparing 

average time to complete a task.  We will use the University of North Florida’s website for evaluation.  

We will create a new version of the site that utilizes our framework, and compare the average time it 

took users to find specific content using the current website versus the updated version.  



9 
 

Chapter 1. 

Introduction 
 

Modern Web analytics tools are an incredibly valuable asset for any organization with a strong Web 

presence.  These tools track user actions on a site and offer insight into what users want from the 

website and what they have trouble finding.  Popular tools like Google Analytics (Google Analytics, 2014) 

are widely used by sites across the internet, but the value they provide fluctuates greatly depending on 

how well the tracking data is analyzed and acted upon.  Analytics tools are a valuable source of usability 

and behavioral data that is too often overlooked or not used to its full potential (Phippen, Sheppard, & 

Furnell, 2004).  For analytics data to be properly utilized an organization would need to keep a constant 

eye on these statistics and update the site design to reflect the changing needs of users (Prom, 2011).  

Such constant vigilance and development is often not feasible for many organizations. Ideally an 

automated system could keep track of trends discovered through analytics and adapt a site in real time, 

with little to no interaction from a developer. 

 

1.1 Problem Statement 

 

For content driven websites, relevant navigation and placement of information should be the top 

priority to help drive as many people as possible to informational pages (Phippen et al., 2004).  Too 

often however, a site is designed to the specifications of content owners rather than to the needs of 

actual visitors to the site.  With many stakeholders involved in site design and variety of contents, it is 

sometimes challenging for a designer to argue for a site update that removes rarely used information 

and pushes useful information to the forefront. This can often lead to busy and difficult to use sites that 

don’t take into account what visitors actually need from a site.  Sometimes you need hard data to 



10 
 

convince someone that the link to their very specific niche of a webpage isn't as important as some 

other navigation options.   Web analytics tools gather data on usage patterns of a website.  Data 

gathered by web analytics can help designers address the usability problems of a site and keep track of 

changing usage patterns, keeping a site usable as needs change.  The problem with web analytics tools is 

that they require active users to track usage pattern data and act on it in a timely manner to keep the 

site user interface (UI) useful. 

 

There has been extensive research in field of web usability but further work needs to be done to marry 

good web interface design with analytic data that tells designers what visitors to a site really want to 

see.  Good practice in web usability should be paired with analytic data to ensure that a site is not only 

easy to use but also surfaces the information that visitors are actually interested in. This is not a one-

time process, rather a repeated process as a visitor's needs will change over time. The majority of 

visitors may need to find information on certain topics during certain times of year, and a static site 

design cannot react to the changing needs of users.  Unless site owners are constantly watching these 

trends and adapting site design to fit these needs, a site will quickly become less usable (Prom, 2011) 

  

As a case study, we will look at the official website of the University of North Florida.  There are nearly 

70 different links on the homepage alone and the relevance of these links changes over time.  We will 

evaluate the current design of the homepage and various other high traffic pages on the site including 

the library homepage, and use these pages to test the effectiveness of our system. The university 

content owners have neither the manpower nor the web design expertise needed to keep up with these 

changing trends year round.  The university needs to reevaluate the design of its site with analytics data 

in mind and needs a way to adapt the site over time as visitors' needs change.  For example: most 



11 
 

student users would not use a course registration link during middle semester but would likely use that 

link during the registration windows at the end of a semester, semester breaks, or the beginning of a 

semester.  Trends like this need to be acted upon in a timely manner and ideally without involving 

actions from a web designer.  By automatically detecting these trends, and taking action such as moving 

the registration link to the top of a list of menu items, or subtly drawing attention to it through styling, 

users will be able to find their intended destination quicker. 

 

1.2 Contributions 

 

The goal of this research is to develop a generic automated system that will monitor the vast amount of 

data gathered from web analytics and adapt web pages in real time to reflect usage trends.  This thesis 

seeks to create a system for automatically processing tracking data from services like Google Analytics 

and transforming that data into adaptations of a site’s user interface. By modifying the user interface 

dynamically according to usage patterns we will improve the usability of the site and surface 

information that is important and relevant to the current visitors.   

 

There is plenty of research into how to apply analytics data to improve a site’s usability, but most of the 

proposed solutions require human analysis and manual action (Prom, 2011).  While there will always be 

a need for designers to work on improving the usability of a site, we believe some of this burden can be 

offloaded to an automated system.  For example, if a designer sees that that a certain page on the 

website is experiencing consistently high traffic they would need to adapt the navigation on the site to 

make links to that page more prevalent.  We believe we can automate these and other similar tasks with 



12 
 

our framework.  We plan to implement a functioning, real-world system to adapt interfaces to the 

changing needs of users. 

 

1.3 Plan 

 

As a case study for this research, we will use the University of North Florida main website (UNF, 2014).  

The university has a single unified content management system that covers most of the web presence 

for the entire university.  The sheer size in terms of content and navigation items on this site make it a 

perfect candidate for the automation of user interface improvements.  Since 2009 UNF has been 

gathering tracking data using Google Analytics totaling to over 9.6 million unique visitors and over 94 

million page views.  We plan to use this wealth of data to develop an automated way of analyzing visitor 

trends and applying the lessons learned from the available research on web usability to develop a smart 

web site that can adapt to changing user needs over time. 

 

The first challenge in realizing this vision is gathering and acting upon a wealth of analytics data.  We 

plan to tap into the analytics data gathered over the past 5 years on the university website and 

transform that data into a format that can be queried and reported on in real time.  Using the Google 

Analytics API (Google Analytics, 2014), we will query past analytics data as well as recent trends in site 

usage and store that data in a simple local reporting data store.   

 

Once we have set up an interface to extract the usage data, we will write a web service interface that 

can be called from a web client to expose the common usage patterns of the page the user is on.  The 



13 
 

challenge in this module will be reporting on and summarizing the usage data quickly so the client code 

can make adaptations to the user interface in time to serve the user’s needs. 

 

The final piece of this solution will be a client framework that will be able to query the reporting service 

and take action on the data provided.  The challenge here will be to make a user interface framework 

that is generic enough to apply to a wide range of site designs and navigation structures.  The idea of 

this piece being that a web developer can utilize it to provide suggestions as to what a user may require 

on the current page. Based on the usage patterns of this page it will execute a set of rules to adapt the 

interface by increasing the visibility of frequently accessed content and navigation items. 

 

Once our system is in place, we will work on implementing it on the university main site.  We will create 

a mirrored version of the site that will use the system to make automated improvements to the user 

interface.  With the mirrored version of the site is in place we will test the effectiveness of these 

changes by asking users to find certain popular content by navigating the site.  We will compare the 

average time it takes users to find the requested content to determine the efficacy of the automated 

improvements.  In addition to this quantitative analysis we will survey the users to obtain qualitative 

data on the automated user interface changes. 

 

1.4 Organization 

 

This thesis will be divided into five sections.  In the second chapter, we will give an overview of web 

analytics and web usability concepts, and review the current state of the industry.  We will also perform 



14 
 

a literature review which will analyze the current state of the art research in web analytics and web 

usability.  In this section, we will find and summarize sources that relate to the goal we are attempting 

to accomplish, we will focus on papers that offer insight on how to analyze web analytics data and how 

to create usable web interfaces.  In the third chapter, we will discuss the design science methodology 

(Hevner, March, Park, & Ram, 2004), and how we plan to apply its guidelines to conduct our research.  

In the fourth chapter, we will discuss our implementation of the automated analytics system.  We will 

present the architecture of our solution and discuss how we implemented the different pieces of the 

system.  In the fifth chapter, we will apply our fully realized system to a mirrored version of the UNF 

website.  We will outline the process of implementing our system in a real-world scenario, and discuss 

the pitfalls and lessons we encounter along the way. In the sixth chapter, we will evaluate the 

effectiveness of our system by subjecting the dynamic mirrored version of the UNF website to various 

user tests.  We will directly compare the current version of the site with the dynamic version to get a 

sense of effectiveness of our system. In the seventh chapter, we will discuss potential future 

improvements and other possible directions to take with our prototype and research.  Finally we will 

compile our results and form a conclusion on the state of our research and its potential utility for 

organizations like UNF. 

  



15 
 

Chapter 2. 

Background and Literature Review 
 

2.1 Background 

In this section, we will discuss various concepts relevant to our proposed dynamic analytics system.  The 

two main concerns of our system are web analytics and web usability, we will discuss these two topics at 

length to provide an overview of the state of the industry.  We will also provide a brief overview of other 

relevant areas used in this research which includes web services and data warehousing.  Understanding 

of both of these concepts will be necessary to properly design our system. 

 

2.1.1 Theory Background Topics 
 

2.1.1.2 Web Analytics 

 

Web analytics is the measurement, collection, analysis, and reporting of Internet data for the purposes 

of understanding and optimizing a web page (Prom, 2011).  The origins of web analytics can be traced 

back to the practice of web usage mining.  Web usage mining involves analyzing web server logs that 

record every request made to a web server.  The idea is that by mining server activity logs, reports could 

be generated about usage patterns on a site (Kumari, Praneeth, & Raju, 2014).  There are various 

problems with this method of obtaining analytics data.  Most of these problems revolve around the fact 

that web server logs keep track of every single request made to a server (Mican & Sitar-Taut, 2009).  

Because every request is logged even requests that don’t represent normal user actions, raw web log 

data can be inaccurate and must be properly filtered.  For example, every request for page content is 

recorded separately including images, stylesheets, and script files.  Recording of each individual request 

can result in a lot of noise in server logs which can complicate reporting.  Another problem with these 



16 
 

logs is that all clients are logged equally including bots and search engine crawlers. Data from bots and 

crawlers are not relevant when trying to determine the behavior of humans on a website, and should be 

excluded (Mican & Sitar-Taut, 2009).  In the end, data obtained from web usage mining is definitely 

useful, but a better solution was needed. This better solution had to be designed from the start with the 

intention of logging user activity specifically for reporting, and this is where web analytics comes in. 

 

Analytics tools have been constantly evolving since the early days of web usage mining.  Modern 

analytics tools offer a robust set of reporting tools that can help users determine usage patterns on a 

website as well as provide other important data about the site. Some of these additional reports include 

information on how the user found the site, the geographic location of users, the devices used on the 

site, and much more (Google Analytics, 2014).  The current market landscape for web analytics tools is 

skewed in the direction of Google Analytics, one report form 2011 put Google’s market share at 81% of 

all websites that use analytics tools (W3Techs, 2011).  We will focus mainly on Google Analytics because 

of their dominance in the market, their wealth of features, and their lack of a service fee. 

 

Google Analytics offers a wealth of reporting tools that surface information about almost every aspect 

of a site’s user base.  For our research, we will focus on a subset of these tools that surface mainly user 

behavioral data (Beasley, 2013). User behavioral data reports include user flow paths that show how 

users navigate a site, content drilldown reports that show the most popular pages on the site as a whole 

as well as on a given page, and traffic source reports that show how users reached the site (Google 

Analytics, 2014).  Figure 1 shows Google Analytics a user behavioral flow report for UNF website. 



17 
 

 

Figure 1. Google Analytics Behavior Flow Report  

 

To extract this reporting data programmatically we will utilize Google Analytics’ extensive reporting API 

web services.  These APIs are exposed as REST web services and offer a programmatic endpoint for most 

of the data exposed in the Google Analytics UI.  The API requires OAuth 2.0 authentication to query the 

data and has quota limits for each user, therefore we will likely need an intermediate layer that will 

query the API and cache the results for use on a high traffic website (Google Analytics, 2014). 

 

Reports like the one above offer a window into user behavior on a site.  From the report above we can 

see the top initial landing pages where users entered the website.  We can also see the most common 

paths taken once on that page.  We can see that most users started on the UNF homepage, and from 

there performed a search landing them on the “search.aspx” page.  Going down the chain of user 



18 
 

interactions we see that some of the most popular destinations for users starting on the homepage are:  

Admissions, COAS (College of Arts and Sciences), Catalog, Library, etc.  These links should be featured 

more prominently on the homepage, especially pages like COAS or Admissions which despite being 

available straight on the homepage, often took users multiple interactions to find.  This report 

represents a one month snapshot of time and may only represent user needs for this specific period of 

time.  Because of this, reports like these need to be re-evaluated multiple times a year to adapt to 

changing user needs.  For our purposes, the data presented in this visual graph are also available in raw 

format from the Google Analytics API, we will discuss our process for extracting this data later in section 

4.2.1. 

 

2.1.1.2 Web Personalization 

 

Analyzing usage data and adapting a user interface is a concept that has been around for a long time.  

Many different sites utilize user browsing patterns to determine additional products or information a 

site visitor may be interested in.  A good deal of research has been done exploring the idea of web 

personalization.  Usage patterns of individual users are analyzed and categorized into profiles that seek 

to predict their future behavior (Mobasher, Cooley, & Srivastava, 2000).  The idea of this process being 

that users with similar needs and tastes would browse in similar patterns and additional products and 

information could be recommended to them.  Most modern shopping sites utilize this type of analysis, 

for example Amazon.com (Amazon, 2014) has a recommendation feature that gives users suggestions 

based on the activity of users with similar shopping patterns.  Where we will differentiate ourselves 

from these well-developed practices is that we seek to facilitate overall site improvement rather than 

personalization for individual users.  Rather than personalize a site based on similar users’ behavior we 



19 
 

aim to improve the overall usability of a site based on global usage trends, using these trends to dictate 

the layout of a site. 

 

2.1.1.3 Web Usability 

 

Web design is a complex task with many different facets to consider especially as it relates to web 

usability.  It can be difficult to develop a site that takes into account all the possible areas of usability.  In 

an effort to document the different types of usability concerns and provide a sort of checklist for web 

developers, various web usability standards have been developed.  Many organizations have created 

their own sets of usability standards including International Organization for Standardization (ISO) 9241, 

ISO 25010, and ISO 1340 (Bevan, 2005).  These standards cover various aspects of web applications and 

their development including: design process and evaluation, optimizing the user experience, 

accessibility, page layout, navigation, and many others.  The different sections contain specific 

suggestions that a developer should apply to their site.  For example in the “designing page layout” 

section of some usability guidelines it may suggest establishing a level of importance for the content, or 

placing important elements in the top center of the page.  For navigation they may suggest providing 

feedback on the user’s current location or keeping main navigation links always visible (Herring & 

Prichard, 2012).  These are just a few examples of the many usability standards offered by various 

organizations.  For our purposes we must ensure that, as we adjust page navigation and structure based 

on analytic data, we adhere to these usability standards and adapt the UI to more effectively implement 

the suggestions they provide.  Adherence to web usability guidelines has been proven to positively 

effect a user’s perception of a site, and it is in the best interest of web developers to be familiar with, 

and apply these guidelines to their work (Bevan, 2005). 

 



20 
 

One of the better sets of usability guidelines found in our research was the one created by the U.S. 

Department of Health and Human Services (U.S. Dept. of Health and Human Services, 2006).  These 

guidelines put in simple terms the consideration that web designers need to take into account when 

designing a usable website.  There are over 200 guidelines in the HHS document, each with a detailed 

description, example, and importance rating.  For the sake of brevity we will not include the full listing of 

guidelines here, but instead will include some of the guidelines most relevant to our research in Table 1 

below. 

Table 1. Select HHS Usability Guidelines 

# Guideline HHS Comments 

5:2 Show All Major 

Options on the 

Homepage 

Users should not be required to click down to the second or third level to 

discover the full breadth of options on a Web site. Be selective about what is 

placed on the homepage, and make sure the options and links presented 

there are the most important ones on the site. 

5:7 Limit Homepage 

Length 

Any element on the homepage that must immediately attract the attention 

of users should be placed 'above the fold'. Information that cannot be seen 

in the first screenful may be missed altogether - this can negatively impact 

the effectiveness of the Web site. If users conclude that what they see on 

the visible portion of the page is not of interest, they may not bother 

scrolling to see the rest of the page. 

6:2 Place Important 

Items 

Consistently 

Put important, clickable items in the same locations, and closer to the top of 

the page, where their location can be better estimated. 

6:5 Establish Level 

of Importance 

The page layout should help users find and use the most important 

information. Important information should appear higher on the page so 

users can locate it quickly. The least used information should appear toward 

the bottom of the page. Information should be presented in the order that is 

most useful to users. 

7:2 Differentiate 

and Group 

Navigation 

Elements 

Clearly differentiate navigation elements from one another, but group and 

place them in a consistent and easy to find place on each page. 

7:11 Use 'Glosses' to 

Assist 

Navigation 

'Glosses' are short phrases of information that pop up when a user places his 

or her mouse pointer over a link. A 'gloss' provides a preview of the type of 

information that will be found behind a link. Users prefer the preview 

information to be located close to the link, but not placed such that it gets in 



21 
 

the way of reading the link. A gloss can be created by defining the Title 

attribute for a link. However, designers should not rely on the 'gloss' to 

compensate for poorly labeled links. 

9:5 Highlight Critical 

Data 

Visually distinguish (i.e., highlight) important page items that require user 

attention, particularly when those items are displayed infrequently. 

10:2 Link to Related 

Content 

Users expect designers to know their Web sites well enough to provide a full 

list of options to related content. 

10:5 Repeat 

Important Links 

Establishing more than one way to access the same information can help 

some users find what they need. When certain information is critical to the 

success of the Web site, provide more than one link to the information. 

Different users may try different ways to find information, depending on 

their own interpretations of a problem and the layout of a page. Some users 

find important links easily when they have a certain label, while others may 

recognize the link best with an alternative name. 

11:4 Ensure Visual 

Consistency 

Visual consistency is the consistent use of design elements such as 

typography, layout, colors, icons, navigation, images, and backgrounds. 

While users can overcome certain inconsistencies (e.g., entry fields, 

pushbuttons), consistent interfaces can reduce errors and task completion 

times. It can also reduce learning curves, and increase user satisfaction. 

11:11 Highlighting 

Information 

One study found that participants were able to complete tasks faster when 

the interface contained either color-coding or a form of ranking, but not 

both. The presence of both seemed to present too much information, and 

reduced the performance advantage by about half. 

12:2 Place Important 

Items at Top of 

the List 

Experienced users usually look first at the top item in a menu or list, and 

almost always look at one of the top three items before looking at those 

farther down the list. Research indicates that users tend to stop scanning a 

list as soon as they see something relevant, thus illustrating the reason to 

place important items at the beginning of lists. 

12:4 Display Related 

Items in Lists 

A well-organized list format tends to facilitate rapid and accurate scanning. 

One study indicated that users scan vertical lists more rapidly than horizontal 

lists. Scanning a horizontal list takes users twenty percent longer than 

scanning a vertical list. 

 

 

 

 



22 
 

2.1.2 Implementation Background Topics 
 

 

2.1.2.1 Web Services 

 

The goal of a web service is to expose a programmatic interface for transmitting data or performing 

actions over the Internet.  Web services are called by the code of other systems to integrate data and 

functionality across a network.  We plan on utilizing web services for two of the main components of our 

solution.  For our solution we will exclusively be using REST web services.  REST stands for 

Representational state transfer, and is characterized by stateless service endpoints that explicitly use 

the HTTP methods such as GET and POST.  REST web services are services to manipulate XML (or other 

data formats) representations of web resources using a uniform set of stateless operations (Booth et al., 

2004).  REST web services are designed to be simple and adhere closely to the basic HTTP protocol.  As a 

result of this all persistence and state management must be handled by the application.  

Authentication and authorization for REST services are usually handled through the use of 

authentication tokens.  Most REST web services offer some form of authentication using temporary 

authentication tokens or permanent application key tokens.  Temporary tokens are often used for client 

side applications, and involve some authentication process with the service provider, usually OAUTH, 

which will provide a token that will last a limited amount of time before that authentication process 

must be repeated.  Permanent tokens are pre-shared tokens that are often associated with a specific 

developer account, and are designed for server side applications that will connect directly to the REST 

services using this secret token (Booth et al., 2004).  

Google Analytics uses REST web services to expose the reporting data, in order to extract this data we 

will need to authenticate to their services and extract this data.  Google analytics uses permanent pre-

shared application tokens, which require minimal setup (Google Analytics, 2014).   



23 
 

In addition to extracting analytics data via web services we will need to create REST endpoints to expose 

summarized and pre-computed data to our client-side framework.  These services will be open, and will 

not use authentication tokens because these endpoints need to be exposed directly to anonymous 

clients.  We will provide more details on the design of these web services in section 4.2.4. 

 

2.1.2.2 Data Warehousing 

 

We will provide brief discussion on data warehousing as it relates to our proposed system.  We will not 

be able to rely solely on the Google Analytics API for all our reporting.  We need the ability to query 

summarized reporting data on every page load.  To do this we cannot simply call the analytics API, as 

this would greatly increase the time it takes our page to fully load.  We will also need to pre-compute 

and store summarized usage statistics to further increase speed.  For this task we will use some well-

established data warehousing techniques (Fasel & Zumstein, 2009).   

 

A data warehouse is a subject-oriented, integrated, time-varying, non-volatile collection of data in 

support of a decision making process (Inmon, Strauss, & Neushloss, 2010).  In other words it is a way to 

store data about certain subjects as they change over time.  This is a good fit for the kind of data we are 

attempting to gather and analyze.  In our case the subjects are the web pages being visited by users.  We 

need to analyze how traffic to and from these pages changed over time.  Because we are using a 

warehousing database in a real time manner we will need to develop a warehouse that can respond 

quickly while still providing the subject-oriented time-variant strengths of a traditional warehouse. 

 



24 
 

The first process that needs to take place when developing a data warehouse is the design of the 

schema.  A simple data warehouse schema, known as a start schema, includes two types of data: facts 

and dimensions.  Facts are the central object of a star schema and contain the summarized data from 

snapshots of time.  The dimension tables radiating off of the fact tables provide the detailed information 

about the objects represented in that snapshot of time in the fact table.  This schema allows for 

historical record of statistics over time by querying for summarized data (facts) based on different 

attributes of business data (dimensions) such as dates, product names, etc. (Inmon et al., 2010).  

Because we are planning on using NoSQL database technology that isn’t as heavily designed around 

relationships, we will be flattening this idea of a star schema, while also retaining some of its core 

features.  We will discuss our specific implantation in more detail in section 4.2.2. 

Another important aspect of data warehousing is the Extract Transform Load (ETL) process.  This 

involves pulling data from a transactional data source, transforming it into a format more suited for 

reporting purposes, and loading it into the warehouse.  The ETL process maps the schema of the 

transactional database to the schema of the warehouse dimension tables (Inmon et al., 2010).  It also 

performs data summarization tasks to store statistics about dimensions in the fact tables.  We will be 

performing a continuous ETL process based on pages a user is requesting.  We will be mapping the data 

pulled from the Google Analytics APIs to the documents in our data store when pages are requested for 

the first time by a client.  As part of this process we will be making multiple calls to the Google Analytics 

API and combining the data from multiple queries into single facts about page navigation trends.  We 

will give a detailed description of this process in sections 4.2.1 and 4.2.2. 

 

 



25 
 

2.2 Related Work 

 

From our research into web analytics and its application to web user interface design we found that it 

was a well explored topic with research dating back to the early days of the web.  We found that the 

techniques of web usage mining and its applications to site personalization have been around for a long 

time and are relatively well explored.  The more recent trend of using web based analytics tools such as 

Google Analytics to improve web usability is also a well-represented topic.  We did, however, find a gap 

in the published literature relating to improving site usability based on analytics data in an automated 

fashion.  We chose to focus our research on taking the knowledge from published sources about 

improving usability based on analytics data and finding a way to apply those methods in an automated 

way.  In this literature review, we present some of the most useful sources we found relating to this 

topic and will discuss how we plan to use the existing research to develop our solution. 

 

2.2.1 Web Usage Mining 

 

The idea of gathering website usage data for use in improving site design began with the concept of web 

usage mining.  Web usage mining involves analyzing web server logs and drawing conclusions about 

usage patterns from these logs.  Traditional data mining techniques such as loading the data into 

analysis cubes in star and snowflake schemas and reporting on that data are used to track individual 

users and find overall trends of usage on the site.  In Büchner's paper on web usage mining for 

marketing purposes he outlines a process for creating a generic reporting cube for analytical data 

(Büchner & Mulvenna, 1998). This paper offers some insights on how to organize and report on web 

usage data.  With so much data constantly flowing in from high traffic websites these reporting 



26 
 

techniques could prove useful for our research.  This paper focuses on using web usage mining and 

reporting for ecommerce purposes to help drive product strategy for companies, which is not the 

primary focus of our research and it may not entirely apply (Büchner & Mulvenna, 1998).  The paper 

used web log data from an online retailer to perform its analysis.  Because their primary focus was retail 

applications, the research doesn’t entirely apply to our goal of improving usability and finding 

informational data rather than products.  The paper also devotes a good deal of time discussing the 

extraction of web log data which is irrelevant for our purposes ads we are using web analytics data that 

is gathered for us.  What we can take from this paper is some insight into how to architect a data store 

based around web usage data (Büchner & Mulvenna, 1998). 

 

Another common application of web usage mining is user personalization.  From the web usage data 

mined from server logs it is possible to extract profiles of user activity and match other anonymous 

users to those profiles.  In the paper by Mobasher et al. the idea of mining user profiles is presented 

(Mobasher et al., 2000).  Based on user navigation patterns, they form profiles of user activity and 

attempt to match live user activity to these profiles.  If a user's activity fits one of their mined profiles 

they then automatically offer the user suggestions of other pages or products they may be interested in.  

This approach to automatically guiding a user based on analytics data is somewhat similar to our 

proposed process.  The way they generate user profiles and determine other pages a user might be 

interested in could be very useful in the implementation of our solution.  Where we believe they fall 

short is in the area of updating the user interface.  This paper does not go into concrete ways of 

improving user experience, it is more focused on matching users to profiles and suggesting links.  The 

paper is also based on data mined from web logs which can be unreliable and misleading as compared 

to modern web analytics tools due to the nature of data collected in web logs (Mican & Sitar-Taut, 

2009).  With our research, we plan to expand on the ideas in this paper and focus less on matching users 



27 
 

to profiles and instead making general user interface improvements based on overall site trends 

(Mobasher et al., 2000). 

 

There are some inherent problems with any web usage monitoring system that must be overcome if any 

useful data is to be mined.  The paper by Mican et al. covers some of the difficulties that must be 

considered when mining usage data (Mican & Sitar-Taut, 2009).  Mining data from web server usage logs 

was the standard way of finding out what your users were looking at on your site until web analytics 

came along.  The problems identified by this paper about this kind of data mining include things like 

search engine bots, content requests that are part of a different overall page request, differentiating 

between content pages and navigational pages, and various other problems.  Although these problems 

were addressed in relation to web usage mining rather than web analytics, we believe they provide 

good insight into some of the problems we may face wen mining web analytics data.  These problems 

must be taken into account when analyzing analytical data, especially when that data will be used for 

automatic changes to a user interface.  For our research, we plan to use some of the insights presented 

in this paper to evaluate whether the analytics data we are mining are legitimate user behaviors.  This 

paper does not draw any significant conclusions about content pages versus navigational pages which 

will also need to be a consideration in our final design so we will need to do our own research in that 

area (Mican & Sitar-Taut, 2009). 

 

There is extensive research into web usage mining as it applies to selling products.  The data mined from 

user activity can be applied to other ends rather than just trying to recommend more products and 

services.  The paper by Kumari et al. explores the potential of using web usage mining and user profile 

analysis to improve the structure and content of a website and track how user interests change over 



28 
 

time (Kumari et al., 2014).  This constant analysis of changing trends over time is a key tenant of our 

research which is why this paper is useful for our purposes.  This paper also takes this analysis a step 

further and does not only analyze usage patterns but also analyzes the content that the users are 

viewing.  By analyzing the content of a page that a user ends up on, they draw conclusions based on 

analysis of that content to find other pieces of content that may be related semantically to the content 

the user found.  This paper focuses mainly on web usage mining and is also concerned with generating 

user profiles, which is not the direction we want to take with our research.  Although this paper does 

not apply specifically to the ideas we are pursuing it does present some very interesting points especially 

related to content driven websites rather than product driven websites (Kumari et al., 2014). 

 

Analyzing data from web metrics is a complex task, the data is overwhelming and the potential pitfalls 

are abundant.  The paper by Weischedel et al. performs an extensive case study on the use of web 

metrics (Weischedel & Huizingh, 2006).  The papers seeks to find the limitations of analyzing web 

metrics and finding the alternative data sources that help supplement this data.  The paper draws some 

interesting conclusions on web metrics analysis including the idea of gathering queries made from 

particular pages and using that data to determine what information should be included on that page.  It 

also champions the usefulness of customer opinion data to supplement hard log data to gather some 

qualitative information that may help improve the design of a site.  This paper focuses mainly on 

clickstream data obtained from server logs which can be unreliable and lead to incorrect conclusions.  

Because we plan to use web analytics as opposed to log based web usage mining many of the 

conclusions reached in this paper do not apply.  Despite the limitations of this paper it does offer some 

interesting conclusions about applying knowledge gained from usage data into concrete site 

improvements (Weischedel & Huizingh, 2006). 



29 
 

 

2.2.2 Web Usability 

 

Gathering and analyzing the usage data is only half of the problem we plan to address in this thesis.  

These metrics on user behavior are useless without the concrete design improvements that follow 

them.  There are several sets of usability guidelines that attempt to address the design considerations of 

a site.  The paper by Lai et al. analyzes one of the industry standard sets of guidelines, the Microsoft 

Usability Guidelines (MUG) by applying the Repertory Grid Technique which is a qualitative evaluation 

methodology used heavily in market research (Lai, Xu, & Tan, 2009).  This paper offers some valuable 

insight into what users are looking for in a web page in their own words and categorizes them into 

actionable areas based on the MUG.  One of the important points presented in this research was the 

emphasis on relevance on a site, the idea that content on any given page is relevant to the core users of 

that page.  This is one of the core ideas of our research, by mining data from analytics as to what other 

pages are most useful to other users of this page is backed up by these updated usability guidelines.  

This paper offers some suggestions on how to improve usability of a site such as increasing icon size for 

important elements, but it doesn't go very far in suggesting user interface improvements, we will have 

to draw these conclusions from other areas of our research (Lai et al., 2009). 

 

For some concrete ideas on improvement of a website’s usability we will look to other sources, 

specifically a paper by Webster et al. entitled “Enhancing the Design of Web Navigation Systems” 

(Webster & Ahuja, 2006).  This paper tackles the topic of navigation usability.  It looks at the global 

navigation of a site and emphasizes concepts like a sense of where you are, and where your next click 

will lead you, and what content you will find at that link. This concept will be important for our work, 



30 
 

some indication of what other users found after following a certain path could lead to subsequent users 

finding relevant information quicker.  This paper examines the idea of global navigation, a common 

navigation element across the whole site that shows your current location in the site, to reduce the 

perceived disorientation of users on a site.  The paper compares three different versions of a site, by 

asking participants to find specific information on the site.  The findings of the paper suggest that simple 

local navigation systems often behaved better than global navigation, perhaps because users were 

presented with fewer choices and less of an information overload.  For our system, we will take into 

account some of the lessons learned in this research to help us adapt navigation systems using analytics 

data (Webster & Ahuja, 2006). 

 

  



31 
 

Chapter 3. 

Research Methodology 
 

 

3.1 Design Science Research Methodology  

 

For this thesis we will be utilizing the Design Science Research Methodology.  Design science research 

involves the creation of new knowledge through the design of novel or innovative artifacts and the 

analysis of the use and/or performance of those artifacts along with refection and abstraction (Vaishnavi 

& Kuechler, 2013).  The real point of the design science research methodology is the idea that design is 

research and the act of designing an artifact is a valid method of conducting research.  What the design 

science methodology stresses over the typical design process is the idea of knowledge contribution.  A 

design project should have a strong focus on contributing knowledge to the field and sharing the results. 

 

3.2 Design Science Research Guidelines 

 

Design science research sets forth various guidelines that provide a framework for executing the design 

process.  These are not strictly enforced guidelines for the design process, rather they are simply aspects 

to consider during the design process (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007).  Below is a 

listing of those guidelines and how we plan to meet them for our research. 

 

 



32 
 

3.2.1 Design as an Artifact 

 

The purpose of this guideline is to ensure that the research works towards producing a viable artifact in 

the form of a construct, a model, a method or an instantiation.  For our research, we plan on producing 

a working example of our dynamic analytics framework.  This will be our physical working artifact that 

we will be able to test and evaluate.  We will outline this artifact in detail in chapter 4. 

 

3.2.2 Problem Relevance 

 

The point of this this guideline is to define a specific research problem that is relevant to the business 

problems of the real world and justify the value of a solution to that problem.  The problem this thesis is 

seeking to address is the degrading usability of websites over time, as user needs change, and the large 

amount of manual work that must be done to maintain a site’s usefulness.  There is a need for an 

automated way to utilize the web analytics data that is already being gathered on many sites to keep a 

site up to date and reflective of current user needs. 

 

3.2.3 Design Evaluation 

 

The goal of the evaluation guideline is to examine the effectiveness of the finished artifact on the 

problem.  We will use the live UNF website, and the alternate version of the site discussed in the 

previous activity, to perform A/B testing with site users.  The users will be asked to accomplish a task on 

one version of the site. We will compare quantitative measurements such as time to accomplish the 



33 
 

task, as well as qualitative measurements in the form of user surveys for the two versions of the site to 

determine if our artifact is effective in solving the problem. 

 

3.2.4 Research Contributions 

 

The research contributions guideline states that the research should provide contributions in the areas 

of the design artifact, design foundations, or methodologies. The objective of this research is to create a 

generic and reusable platform for querying web analytics data, analyzing usage patterns, and using that 

data to adapt the user interface of a site.  This artifact will contribute to the growing field of adaptive 

analytics and will serve as an example of how to dynamically use analytic data to adapt sites.  This 

system should be generic enough to apply to any site while also allowing levels of developer 

customization to fit an organization’s individual needs.  The resulting site will adapt dynamically to 

traffic patterns and lead users to their destination more quickly.  We believe that this research will 

contribute significant insights into the field of dynamic analytics especially in areas outside of E-

Commerce. 

 

3.2.5 Research Rigor 

 

The purpose of this guideline is to ensure that the decisions made when implementing an artifact are 

well informed and represent the best possible solution to the problem.  Decisions made in the 

development of the artifact should be justified and backed up by research.  For our research we plan to 

back up every decision with specific research and exhaustive analysis.  We plan to justify each of our 



34 
 

decisions according to the best information available to us.  Essentially our research rigor will be derived 

from the effective use of the existing knowledge base.   

 

3.2.6 Design as a Search Process 

 

This guideline states that the design process for an artifact should be a search process to find the best 

possible solution to the problem.  For our research, we have done extensive searching into the field of 

analytics and plan to use various existing tools to help us architect our solution.  We are not starting 

development of our system from scratch, we are taking the state of the art technologies available today 

and expanding on them with our own ideas.  We will continue to evaluate alternative options as we 

develop our solution keeping in mind that we are always searching for a better solution to the problem. 

 

3.2.7 Communication 

 

The final guideline of the design science research methodology is communication.  The problem and its 

importance as well as the resulting artifact and its effectiveness should be conveyed to relevant 

audiences.  In adherence to this guideline this thesis will be defended in a public forum and the resulting 

research will be published along with the source code of the resulting artifact. 

  



35 
 

Chapter 4. 

Dynamic Analytics Framework 

In this chapter, we will discuss our development plan for the solution and justify the decisions we make 

during each step of the design process.  We will first discuss the architecture of the system which 

includes components for extraction of data from Google Analytics and the client side framework that 

will adapt the website.  We will present different options available to us in terms of frameworks and 

technologies, and justify our final choice based on the features of that technology and our ability to 

learn and implement that technology in a timely manner.  Next, we will evaluate the feasibility of our 

timeline for development.  We will take into account our knowledge of the technologies in use and the 

estimated time it will take us to perform the development tasks.  The end result will be a detailed 

development plan including dates for completing milestones.  Finally, we will discuss the economic 

feasibility of our complete system.  We must address the costs required to develop and host each of the 

components involved in the system.  Where possible, we will use open source technologies to avoid 

large costs, but there will likely be some cost associated with server hosting.  The end result of this 

chapter will be a detailed plan for development of our system that will prepare us for the development 

portion of our research. 

 

4.1 Website Improvement Process 

 

The current process for updating the design of a website based on analytics data is a primarily manual 

process involving multiple stakeholders.  The basic process involves a web team that can consist of many 

different specialized individuals including developers, designers, marketing personnel, content creators, 

etc., generating reports from analytics tools and using those reports to make decisions about website 



36 
 

design (Weischedel & Huizingh, 2006).  The developers and designers then go to work updating the 

underlying code, the design, and the content of the website.  Those changes are published to the live 

site and the cycle continues again as analytics data are gathered on the new design.  This process needs 

to be repeated often to maintain the usability of a site as user needs change. Figure 2 provides 

diagrammatic overview of the website improvement process. 

 

Figure 2. The Website Improvement Process  

 

 

 



37 
 

4.2 Dynamic Analytics Framework Architecture 
 

While the process outlined above cannot be completely be replaced by automated processes, we 

believe that our system will be able to take over some of the smaller, more data driven decisions.  This 

would free up the web team and allow them to focus on the more sweeping and important interface 

changes.  Our system will read and analyze analytics data and apply the lessons learned from this data to 

site improvements, much in the same way that a web team does. To do this our system will need to 

consist of four major components.  Firstly it will need a mechanism for extracting data from Google 

Analytics reporting APIs.  We will then need to store that data in a way that it can be quickly extracted 

and used for interface updates.  We will then need a service layer that can expose that reporting data to 

the client framework which will be responsible for updating the interface.  Each of these layers will be 

discussed in more detail later in this chapter. Figure 3provides a quick overview of how each of these 

pieces fit together. 



38 
 

 

Figure 3. Dynamic Analytics Framework Architecture  

 

4.2.1 Extracting Analytics Data 

 

The first task our system must accomplish is extracting live analytics data from our web analytics 

provider.  We have chosen to use Google Analytics for our system because of its overwhelming market 

share and comprehensive feature set. Google currently enjoys an 81% market share in the field of web 

analytics as of 2011 (W3Techs, 2011).  Google also offers a feature rich reporting API that will allow us to 

extract the analytics data and use it for our own purposes.  These APIs are REST web service based and 



39 
 

we will be able to easily tap into them with a simple server-side REST client. The Google Analytics 

reporting API does have two drawbacks that prevent us from using it in real time to query reporting 

data.  Firstly, because it is a free service Google imposes rate limits on its reporting API to prevent 

overuse.  Secondly, because the API is mainly intended for reporting it does not provide the kind of 

speed necessary for us to use it to update an interface in real time (Google Analytics, 2014).  Because of 

these limitations we must extract the reporting data, transform it into a format more fit to our purposes 

and store it ourselves.  

 

 To facilitate this, our system will receive incoming requests and first query our database to see if we 

have already cached the reporting data for that request.  If data for that page is not found, the Data 

Extraction Service (See figure 3) will be executed to extract the data from the reporting API.  This 

process will be a separate module of the Web Services application we will discuss later in section 4.2.3.  

This module will be run on a separate thread, and will be responsible for asynchronously updating the 

data store with the data gathered from the analytics API.  When data on a page is not available in our 

data store, or the data gathered previously is expired, the service application will create a new threaded 

task to update that data then return to the client.  We will store this reporting data with time stamps so 

we can enforce an absolute expiration time for these reports. This will allow us to keep a history of 

activity over time while also obtaining data on new trends. If the data for a given page request is not 

found or if it is past its expiration, the middleware will fetch fresh data from the Google Analytics API, 

store it in our data store, then return it to the browser.  Figure 4 provides flow chart representation of 

this process. 



40 
 

 

Figure 4. Querying and Storing Analytics Data  

The data we are extracting from the Google Analytics API will need to be transformed and mapped to 

our database structure.  The Google Analytics API provides all of its data via a single REST endpoint.  To 

that endpoint we will pass a set of dimensions and metrics which will determine the data we get back.  

Dimensions represent attributes of single items such as pages (title, path, etc.) whereas metrics 

represent computed statistics about those pages (views, time on page, etc.) Table 2 shows how we will 

query the reporting API data and how those dimensions and metrics will be mapped to our database 

PageSnapshot schema.  The query to extract GlobalTrend data will be very similar, we will simply 

remove the filter parameter.  More information on the database schema is outlined in section 4.2.2. 

 

 

 



41 
 

Table 2. Analytics API Queries 

Building PageSnapshot  

   

Property Type Mapped To 

PageURL String Provided 

DateRetrieved Date Current Date 

PrevPages Page[] Navigation Query 

NextPages Page[] Navigation Query 

CommonDestinations Page[] Navigation Query 

Searches Search[] Search Query 

 

Navigation Query Returns: Page[]   

    
Dimensions Metrics Filter Sort 
pagePath 
 
 
OR 
exitPagePath 

pageviews prevPage = PageURL 
OR 
nextPage = PageURL 
OR 
pagePath = PageURL 

pageviews Desc 

pageTitle avgTimeOnPage   
 exitRate   

    
Result Column Mapping   
pagePath Page.PageURL   
pageTitle Page.PageTitle   
Pageviews Page.Hits   
avgTimeOnPage Page.AvgTimeOnPage   
exitRate Page.ExitRate   
    
 
 
 

   

Search Query Returns: Search[]   

    
Dimensions Metrics Filter Sort 
searchKeyword searchResultViews prevPage = PageURL searchResultViews 

Desc 
exitPagePath    

    
Result Column Mapping   
searchKeyword Search.Keyword   
exitPagePath Search.Destination   
searchResultViews Search.Hits   

 



42 
 

4.2.2 Analytics Data Store 
 

The next component of our system is the analytics data store which will be used to store the reporting 

data we queried from the Google APIs.  Our data store will share many characteristics with data 

warehouses.  Data warehouses are subject oriented, time variant, and nonvolatile stores of summarized 

reporting data (Inmon et al., 2010).  Our data store will incorporate all of these properties.  The data 

structure of our database will be based on subjects such as the summarized analytics data of a given 

webpage and the pages users navigated to next.  These will be stored as a single document in our 

database (see below for a detailed data design.)  We will also store our data in a time variant and 

nonvolatile way.  We are interested in analytics data in snapshots of time.  Because of this, we will store 

the analytics data pulled from Google Analytics with time stamps to indicate when it was pulled from 

the API, this will allow us to look back on changes in traffic patterns over time.  Although we are 

following many of the concepts of traditional data warehousing we are not constraining ourselves to 

typical data warehouse design.   

We are designing our database with facts and dimensions, just like a traditional data warehouse start 

schema.  Because NoSQL relies less on relationships between documents we will be flattening out the 

facts and dimensions of our star schema into a single document.  For example, our PageSnapshot object 

(See figure 5 below) will represent a fact, that fact will contain summarized data about a specific web 

page at a specific time.  The time the data was retrieved, the data about the page itself, and its related 

pages are all dimensions that can be used to query information about that fact.  As you can see below in 

figure 5, the facts and their dimensions are stored in the same document, which is more consistent with 

NoSQL document based data design.   

 



43 
 

For our data store we will be using a NoSQL database (Pokorny, 2013).  NoSQL data stores provide a few 

key advantages we are interested in.  NoSQL offers schemaless design allowing us to easily expand our 

data models to add new functionality.  As we discover new important metrics about user patterns and 

expand our framework, we will need to expand the data model and add additional summarized 

statistics.  NoSQL gives us the ability to do this on the fly without completely redesigning our database 

schema.  This will give us a good deal of flexibility during the design process. Most NoSQL is also very 

horizontally scalable, meaning we can easily scale our single database to account for increased traffic.  

This means that even with our relatively limited resources and funds we will be able to create a scalable 

database that could be applied to a very popular website like the UNF website.  By simply requesting 

additional instances of our datastore we can rapidly increase the performance of our framework.  

Finally, it offers extremely quick reads and writes across multiple instances with an “Eventual 

Consistency,” meaning we can very quickly perform writes to the data store and eventually get 

consistency with other users on different instances.  Because we are not writing a purely transactional 

system we are not necessarily concerned with the immediate consistency between queries offered by 

traditional SQL databases, and as a result we will be able to take advantage of the performance gains 

afforded by having multiple independent instances of our datastore (Pokorny, 2013).  We will discuss 

our specific choice of NoSQL technology in section 4.3. 

 

The data design of our data store (see figure 5) will use the concept of documents (Pokorny, 2013).  We 

will define document types for the different features of our framework.  Below are the data definitions 

of our documents in UML format, essentially they are documents containing key value pairs with sub 

documents containing their own key value pairs.  These nested documents are stored together rather 



44 
 

than in traditional in related tables.  

 

Figure 5. Data Store Schema 

 

We have two main document types: GlobalTrends and PageSnapshots.  The GlobalTrends documents 

contain information about the most popular content on the site overall.  This information will be queried 

from various endpoints of the Google API and consolidated in a single document.  These documents will 

have time stamps of when they are retrieved allowing us to set an expiration time for this data as well as 

track changing usage trends over time.  The PageSnapshot documents will contain information about 



45 
 

specific pages a user is visiting.  They will contain information about the pages that are often navigated 

to next and the common end destinations when navigating through this page.  These documents will 

also contain information about searches performed from this page and where those users eventually 

ended up.  All this data will be collated from various queries to the Google API and stored in in this 

format to maximize retrieval speed. The sub documents of PageHits and Search will contain the raw 

data about page hits and search queries and will be contained within their parent documents.   

We will place indexes on the DateRetrieved and PageURL properties to improve performance of select 

queries on these properties. 

 

4.2.3 Web Service Layer 

 

Once the analytics data has been gathered and stored in our database, we will need to expose that data 

to client browsers.  We will need a web service layer that will serve as the endpoint for queries on page 

analytics data.  We will expose this data via REST web services that return the summarized data from 

our data store in JSON format.  We will have two endpoints, one that will return the current global 

usage trends on the website, and one that will return usage trends for specific pages. Figure 6 provides 

UML class representation of the REST web service. 



46 
 

 

Figure 6. Web Service Interfaces 

 

The web service application will be responsible for determining where the data is pulled from.  The logic 

for determining whether the cache and the database are up to date will exist in the web service layer.  In 

addition, the web service layer will be responsible for creating another threaded task to update the data 

store when it is discovered to be out of date.  Figure 7 provides a UML sequence diagram of the data 

flow logic that will determine where the analytics data will be pulled from when the web services are 

called. 



47 
 

 

Figure 7. Web Service Sequence Diagram  

 

The most important factor for these web services will be speed.  These services need to return the 

requested usage data as quickly as possible.  To accomplish this we will heavily utilize distributed 

caching technologies.  We will talk more about the specific technologies in section 4.3 below. 

 



48 
 

4.2.4 Client Side Framework 

 

The final component of our system is the client side framework that will do the work of adapting the 

user interface of the web page.  The primary function of this component will be the adaptation of the 

user interface based on the data retrieved from the web services.  The goal of this component will be to 

change the interface in subtle ways that surface more popular navigation options, while not changing 

the interface in a way that disorients returning users.  To do this we will need to take into consideration 

all the lessons we learned about web usability which we outlined in our background and literature 

review chapter.  

 

 This component will also need to be highly customizable for web developers.  We want to surface the 

analytics statistics we are gathering in such a way that developers can define behaviors based on the 

data returned.  Developers will be able to subscribe to certain events in the client side framework that 

will rank navigation options on a page and allow developers to assign different styles to navigation 

options of different popularity.  The client side framework will also have functions that return popular 

and trending topics on the site as a whole (global trends) which will allow developers to create sections 

of a page that always display the most important links on a site, and dynamically update as those 

popular links change. 

 

This client side framework will be written using a language called CoffeeScript.  CoffeeScript is a 

language that compiles into standard JavaScript and offers various syntactical and structural benefits 

over vanilla JavaScript (CoffeeScript, 2014).  This language will help us create a well architected 

JavaScript framework that will be easily maintained and expanded upon.  Object oriented design can be 



49 
 

very difficult and verbose when using standard JavaScript.  With CoffeeScript we will be able to more 

easily design a client side framework that is maintainable and extendable 

 

We will also utilize the virtually industry standard jQuery framework to assist with Document Object 

Model (DOM) manipulation tasks.  The DOM is an interface for dynamically accessing and modifying the 

content and structure of HTML documents via JavaScript (W3C DOM Interest Group, 2005).  To update 

the user interface of a website programmatically we will need to manipulate the DOM by adding styles 

and HTML elements. jQuery is used industry wide for client side user interface design and will greatly 

speed up our development efforts for the client side framework over vanilla JavaScript (jQuery, 2014). 

 

4.3 Technology 

 

While researching different technologies to build our system, we found many different options that each 

offered their own unique advantages.  In the end, we settled on a technology stack that would allow us 

to easily integrate all the modules of our application while also providing high performance scalability.  

We have analyzed two different possible technology stack options outlined below.  We will need to find 

technologies to fulfil the following requirements. 

Table 3. Components 

Server Host web application 

Web Application Language Application logic 

Handle REST API requests 

Cache Technology Store frequently accessed reporting data 

Database Long term data storage 

Historical reporting data 



50 
 

4.3.1 Google App Engine Technology Stack 

 

Our first technology stack choice is the Google App Engine platform (Google App Engine, 2014).  This 

platform offers a high performance in-memory caching strategy backed up by a cutting edge NoSQL 

database infrastructure based on Google’s own BigTable technology (Google App Engine, 2014).  This 

will allow for automatic caching of frequently accessed data without additional programming effort 

integrating cache and database technologies. It also offers full featured web application hosting for our 

REST web services and data extraction service layer using the Python language.  We are already familiar 

with this technology stack, so the learning curve should be small.  App Engine also promises to be highly 

scalable if we need to subject the system to heavy load (Google App Engine, 2014).   The reason we 

considered the App Engine technology stack is it offers all the components we require in a single 

integrated stack.  With minimal integration work we will be able to satisfy all of our technology 

requirements. The pricing model for App Engine is also reasonable, and we will discuss the details later 

in section 4.5.  Table 2 provides summary of Google App Engine technology stack. 

 

Table 4. Google App Engine Technology Stack 

Server Google Cloud Platform (Google App Engine, 2014) 

Web Application App Engine Python Runtime Environment 

Cache Google NDB Datastore 

Database Google NDB Datastore 

 

4.3.2 Microsoft Technology Stack 

 

As an alternative option, we have also chosen another technology stack that could satisfy the same 

technological requirements as the App Engine stack.  We are also very familiar with the Microsoft .NET 



51 
 

technology stack and we can use a collection of other tools to produce the same environment that is 

packaged together with app engine.  The integration effort for this technology stack would be 

significantly higher than the app engine stack.  The Microsoft .NET MVC framework will allow for 

development of REST web services and the creation of services for extracting data from the analytics 

API.  The Redis cache server will allow for in-memory storage of frequently accessed reporting data, and 

the mongoDB database will allow for more permanent storage of historical reporting data.  The difficulty 

of this technology stack will be the integration effort between the components. There are frameworks 

available for integrating these different technologies, but the integration and installation efforts would 

be significantly higher than the Google App Engine stack which comes pre-installed and integrated out 

of the box.  The pricing for this stack will likely be higher than the App Engine stack and it will take more 

effort to integrate each piece. Table 5 provides summary of Microsoft technology stack. 

 

Table 5. Microsoft Technology Stack 

Server Microsoft Windows Server 2013 running on Amazon EC2 Web Services  

(Amazon Web Services, 2014) 

 

Web Application Microsoft .Net MVC4 Web API (Microsoft ASP.NET, 2014) 

Cache Redis Cache Server (Redis, 2014) 

Database mongoDb (mongoDB, 2014) 

 

4.4 Timeline 

 

 

The ultimate goal for completion of this thesis is the end of the spring 2015 term.  This section outlines 

the timeline for development of our system, evaluation of the proposed solution, and writing of final 

thesis document, and thesis defense presentation.  This prospectus will serve as the first half of the final 



52 
 

paper and we will update it as we work through the development process.  We will organize our 

development process into sprints, loosely following the agile methodology (Martin, 2003).  At the 

beginning of each 2 week sprint, we will create a backlog of features to be completed in that sprint.  At 

the end of that sprint we will generate a working prototype for testing and evaluation. Below are the 

milestone dates for the development process. 

Table 6. Timeline 

December 1st   Present prospectus 
 Start Sprint #1  

o Setup development environment 
o Create overall project structure 

December 6th   Present at SOC symposium to get feedback on the research idea, 
proposed solution, and the approach 

December 15th   Start Sprint #2 
o Create Database 
o Contact IRB in regards to evaluating system using human 

subjects, begin registration/approval process if necessary 

December 29th   Start Sprint #3 
o Data import from Google Analytics 

January 12th   Start Sprint #4 
o Create web services layer 
o Create client side framework 

January 26th   Start Sprint #5 
o Testing the system functionality 
o Implement system on copy of UNF website 
o Begin organizing user testing 

January 30th   Deadline for graduation application 

February 9th   Development Complete 
 Begin  controlled experiments to evaluate the system 

February 13th  Deadline for committee membership 

February 23rd   Finish first draft 

March 9th   Finish final draft 

March 23rd   Defend 

April 3rd   Deadline for thesis defense 

April 17th  Deadline for thesis submission 

 



53 
 

 

 

4.5 Budget 

 

Below we have outlined two separate budgets for each of the technology stack identified for the 

development of our system.  All the development tools and machines we plan to use are either already 

owned or free and open source. 

 

4.5.1 Budget: Google App Engine Technology Stack 

 

Google App Engine charges by the hour per running application instance, for outgoing network traffic, 

file system and database storage, and read/write operations on the database.  Table 5 provides 

summary of a very liberal estimation of our potential usage.  These prices are very low and even if we 

vastly underestimated our usage, the pricing will still be very reasonable 

Table 7. Budget: Google App Engine Technology Stack 

Google Analytics Free 

50,000 requests/day  

Google App Engine $7.79/mo 

5 Instances 150 instance hours  

500 MB outgoing network traffic  

500 MB file system storage  

Google NDB Datastore $1.02/mo 

5GB stored data  

100,000 read & 100,000 write operations  

Total $8.81/mo 

 



54 
 

 

4.5.2 Budget: Microsoft Technology Stack 

 

For the Microsoft technology stack we plan to utilize mostly open source and free technologies.  For 

application hosting we will use Amazon’s EC2 dedicated hosting platform which charges for running 

instances only.  We will be able to create a server instance an only pay for it while the server is running, 

keeping costs low.  Table 6 outlines the costs for this strategy estimating 150 running instance hours. 

Table 8. Budget: Microsoft Technology Stack 

Google Analytics Free 

50,000 requests/day  

Amazon Web Services EC2 $0.329/hour (running instances only) 

Windows Server 2013 Large Instance  

.NET MVC 4 Free 

Redis Cache Server Free (Open Source) 

mongoDB Free (Open Source) 

Total (150 hours) $49.35 

 

4.5.3 Technology Stack Choice 

 

After analyzing the two technology stack options outlined above, we have decided to utilize the Google 

App Engine stack.  The App Engine stack offers tighter integration between different components of our 

framework, all the components mentioned above are integrated out of the box and built into the App 

Engine API.  In contrast, the Microsoft technology stack would require installation and integration of the 

different open source components needed to develop our full solution.  In addition to the extra 

integration efforts needed for the Microsoft stack, the costs of running the servers is also a factor in our 



55 
 

decision.  Because the Microsoft stack requires a dedicated virtual server as opposed to a shared 

application hosting environment, the cost to run our solution would be significantly higher.  The 

development efforts in terms of application logic for either stack would be comparable, as we have 

experience developing with each these technology stacks.  Although both options would fit our needs, 

we believe that the App Engine stack would ease development and result in a better architected 

solution. 

  



56 
 

Chapter 5. 

Real-World Application 
 

As part of the development process of our system, we will apply the framework we have developed to 

the University of North Florida website (UNF, 2014).  We have access to the source code of the UNF 

website and full access to the UNF Google Analytics account and data.  We have also received approval 

from ITS to use this data for our research.  We will produce an alternate version of the UNF website 

which utilizes our framework, and applies analytics based user interface changes to the site for the end 

user testing we will describe in chapter 6.   

We plan to implement our framework on multiple pages of the UNF website.  We plan to install our 

framework on the UNF Homepage, the Library Homepage, and Current Students page.  We have chosen 

these three pages because they are some of the highest traffic pages on the site, and have many 

different navigation options that can overwhelm users.  Our goal is to make these pages easier for users 

to navigate by surfacing the links most commonly used on each of these pages.  The UNF homepage 

alone has over 70 links to other pages, we believe we can draw attention to the most important links on 

this page based on current user trends.  Our ultimate goal is to offer users the navigation options they 

are looking for without having to use the search feature on the page. This chapter will be expanded 

upon as we apply our framework to the university website with details of our implementation. 



57 
 

 

Figure 8. UNF Website Homepage 

  



58 
 

Chapter 6. 

Evaluation 
 

As we mentioned in the previous chapter, we will be building an alternate version of the UNF website 

and testing the two versions of the site with different users. We will be measuring the time it takes users 

to complete actions, and gathering qualitative responses about their experience navigating the site.  In 

this chapter we will outline our plan for evaluating the two designs. 

6.1 Testing Process 

Our testing process will use a simple A/B testing approach to evaluate the new design of the site 

alongside the original design.  A/B testing is a popular method of evaluating alternate designs of a user 

interface.  Normally A/B testing assigns random users to different versions of the same interface.  

Statistics about decision time, conversion rate, and user satisfaction, are compared between the two 

designs and a decision is made based on the success of one interface over another (Kohavi, 

Longbotham, Sommerfield, & Henne, 2009).   

We will be following the same overall idea, but will be using a less programmatic, and more manual 

approach.  Because we cannot place our alternate design on the live UNF website we will not be able to 

gather large amounts of statistics with automated A/B testing.  We will instead be presenting the 

updated interface to users in person, and asking them to complete some simple tasks, such as: “navigate 

to the course registration page.”  To some users, we will simply present the current live UNF website 

and ask them to perform the same tasks we asked the other users to complete as a control scenario.  

We will randomly assign the new version of the UNF homepage or the existing homepage to users. We 

will also ask them to complete a short survey about their experience with the new interface when the 

testing is complete. We will ask users to perform multiple different tasks on different interfaces to make 

up for our relatively small sample size.  



59 
 

Because users will become familiar with the version of the site they first use, we will not be able to ask 

the same user to perform the task on both versions of the site.  We will however, show both versions of 

the site to the user at the end of the process so they can offer qualitative feedback about the two 

versions of the site side by side.  We will also be able to mine some data from the Google Analytics 

reports on the existing live site to compare with our in-person testing. 

 

6.2 Our Study Participants 

We will be asking for volunteers for our testing process and not offering monetary compensation.  We 

plan on asking mainly UNF students and staff to participate.  Because users are volunteering their time, 

we plan to keep the testing process very short and only take up 5-10 minutes of the user’s time.  Our 

goal is to create a semi-automated testing process that will guide the users through a set of small tasks, 

and record the time along the way.  At the end of the process, the users will be asked to provide 

feedback on the interface in the form of a 1 to 5 star rating system and a free text comment box. We will 

post an item about the study participation in the Osprey Student Update and send requests to a few 

faculty members within and outside the School of Computing to request the participation of their 

students in the study. 

 

6.3 IRB Approval 

Because our research will use human testing we have contacted the UNF Institutional Review Board 

(IRB) to ensure we are following their guidelines.  The initial response we received seemed to indicate 

that we will not need full IRB approval to perform our research.  We will however, submit a formal 

request to them and include their official response in our final draft.  



60 
 

Chapter 7. 

Future Improvements 
 

This chapter will be completed after we have finished development of the system. 

 

  



61 
 

Chapter 8. 

Conclusion 
 

This chapter will be completed after we have finished development and user testing of the system.  



62 
 

REFERENCES  

Amazon. (2014). Amazon. Retrieved from http://www.amazon.com/  

Amazon Web Services. (2014). Amazon EC2. Retrieved from http://aws.amazon.com/ec2/  

Beasley, M. (2013). Practical web analytics for user experience : How analytics can help you 

understand your users. Amsterdam: Morgan Kaufmann, an imprint of Elsevier.  

Bevan, N. (2005). Guidelines and standards for web usability. Proceedings of HCI International 

2005, Lawrence Erlbaum, Las Vegas, Nevada.  

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. & Orchard, D. 

(2004). Web services architecture - W3C working group note. Retrieved from 

http://www.w3.org/TR/ws-arch/  

Büchner, A. G., & Mulvenna, M. D. (1998). Discovering internet marketing intelligence through 

online analytical web usage mining. SIGMOD Rec., 27(4), 54-61.  

CoffeeScript. (2014). CoffeeScript. Retrieved from http://coffeescript.org/  

Fasel, D., & Zumstein, D. (2009). A fuzzy data warehouse approach for web analytics. In M. 

Lytras, E. Damiani, J. Carroll, R. Tennyson, D. Avison, A. Naeve, . . . G. Vossen (Eds.), 

(pp. 276-285) Springer Berlin Heidelberg. doi:10.1007/978-3-642-04754-1_29  

Google Analytics. (2014). Reporting developer guides. Retrieved from 

https://developers.google.com/analytics/devguides/reporting/  

http://www.amazon.com/
http://aws.amazon.com/ec2/
http://www.w3.org/TR/ws-arch/
http://coffeescript.org/
https://developers.google.com/analytics/devguides/reporting/


63 
 

Google App Engine. (2014). Google app engine: Platform as A service. Retrieved from 

https://cloud.google.com/appengine/docs  

Herring, M., & Prichard, J. (2012). The effect of web usability on user's web experience. 

Proceedings for the Northeast Region Decision Sciences Institute (NEDSI), , 207-215.  

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems 

research. MIS Q., 28(1), 75-105.  

Inmon, W. H., Strauss, D., & Neushloss, G. (2010). DW 2.0: The architecture for the next 

generation of data warehousing: The architecture for the next generation of data 

warehousing Elsevier Science.  

jQuery. (2014). jQuery. Retrieved from http://jquery.com/  

Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. (2009). Controlled experiments on 

the web: Survey and practical guide. Data Mining and Knowledge Discovery, 18(1), 140-

181. doi:10.1007/s10618-008-0114-1  

Kumari, G. V., Praneeth, P. 2., & Raju, V. P. (2014). An application of web usage mining 

framework for mining dynamic web sites. International Journal of Advanced Research in 

Computer Science, 5(2), 91-93.  

Lai, L. T., Xu, Y., & Tan, F. B. (2009). Attributes of web site usability: A study of web users 

with the repertory grid technique. International Journal of Electronic Commerce, 13(4), 97-

126. doi:10.2753/JEC1086-4415130405  

https://cloud.google.com/appengine/docs
http://jquery.com/


64 
 

Martin, R. C. (2003). Agile software development: Principles, patterns, and practices Prentice 

Hall PTR.  

Mican, D., & Sitar-Taut, D. (2009). Preprocessing and Content/Navigational pages identification 

as premises for an extended web usage mining model development. Informatica Economica, 

13(4), 168-179.  

Microsoft ASP.NET. (2014). Learn about ASP.NET web API. Retrieved from 

http://www.asp.net/web-api  

Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on web 

usage mining. Commun.ACM, 43(8), 142-151.  

mongoDB. (2014). mongoDB. Retrieved from http://www.mongodb.org/  

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science 

research methodology for information systems research. Journal of Management 

Information Systems, 24(3), 45-77.  

Phippen, A., Sheppard, L., & Furnell, S. (2004). A practical evaluation of web analytics. Internet 

Research, 14(4), 284-293. doi:10.1108/10662240410555306  

Pokorny, J. (2013). NoSQL databases: A step to database scalability in web environment. 

International Journal of Web Information Systems, 9(1), 69-82.  

Prom, C. (2011). Using web analytics to improve online access to archival resources. American 

Archivist, 74(1), 158-184.  

http://www.asp.net/web-api
http://www.mongodb.org/


65 
 

Redis. (2014). Redis. Retrieved from http://redis.io/  

U.S. Dept. of Health and Human Services. (2006). The research-based web design & usability 

guidelines. Retrieved from http://guidelines.usability.gov/  

UNF. (2014). University of north florida. Retrieved from http://www.unf.edu  

Vaishnavi, V., & Kuechler, B. (2013). Design science research in information systems. Retrieved 

from http://desrist.org/desrist/  

W3C DOM Interest Group. (2005). Document object model (DOM). Retrieved from 

http://www.w3.org/DOM/  

W3Techs. (2011). Usage statistics and market share of google analytics for websites. Retrieved 

from http://w3techs.com/technologies/details/ta-googleanalytics/all/all  

Webster, J., & Ahuja, J. S. (2006). Enhancing the design of web navigation systems: The 

influence of user disorientation on engagement and performance. MIS Quarterly, 30(3), 

661-678.  

Weischedel, B., & Huizingh, E. K. R. E. (2006). Website optimization with web metrics: A case 

study. Fredericton, New Brunswick, Canada: ACM.  

 

http://redis.io/
http://guidelines.usability.gov/
http://www.unf.edu/
http://desrist.org/desrist/
http://www.w3.org/DOM/
http://w3techs.com/technologies/details/ta-googleanalytics/all/all

